Монография посвящена общим принципам совершенствования нейросетевых методов моделирования диагностики и прогнозирования вероятности риска банкротств корпораций применительно к сложным условиям моделирования: неполноты, неточности и неопределённости в данных. Впервые рассмотрены вопросы байесовской регуляризации нейросетевых моделей в условиях отсутствия априорных сведений о виде закона распределения шумов в данных, оценки адекватности нейросетевых моделей на основе последовательного принципа...
Монография посвящена сложной и практически неисследованной проблеме нейросетевого моделирования развития процессов банкротств корпораций в динамике. Сложность этих моделей вытекает из специфической неполноты данных, обусловленных юридическими причинами, и сильной зашумленности данных. Предложен метод оптимизации структуры нейросети в комбинации с её байесовской регуляризацией, а также алгоритм компрессии переменных на основе обобщенной функции желательности Харрингтона. Разработан на основе...