В этой книге рассматриваются так называемые модели «черного ящика» для повышения адаптивности, интерпретируемости и объяснимости решений, принимаемых алгоритмами искусственного интеллекта (ИИ), с использованием таких фреймворков, как библиотеки Python XAI, TensorFlow 2.0+, Keras, а также пользовательских фреймворков, использующих оболочки Python. Излагаются основы объяснимости и интерпретируемости моделей, обсуждаются методы и системы для интерпретации линейных, нелинейных моделей и моделей...