Классическая (шенноновская) теория информации измеряет количество информации, заключенной в случайных величинах. В середине 1960-х годов А.Н.Колмогоров (и другие авторы) предложили измерять количество информации в конечных объектах с помощью теории алгоритмов, определив сложность объекта как минимальную длину программы, порождающей этот объект. Это определение послужило основой для алгоритмической теории информации, а также для алгоритмической теории вероятностей: объект считается случайным, если его сложность близка к максимальной.
Предлагаемая книга содержит подробное изложение основных понятий алгоритмической теории информации и теории вероятностей, а также наиболее важных работ, выполненных в рамках колмогоровского семинара по сложности определений и сложности вычислений, основанного А.Н.Колмогоровым в начале 1980-х годов.
Чтобы оставить свою оценку и/или комментарий, Вам нужно войти под своей учетной записью или зарегистрироваться
Пока никто не оставил впечатление о книге...
Пока никто не оставил цитат из этой книги...
Автор | Генри Дьюдени |
Жанр | Математика, Естественнонаучные дисциплины |
Год | 1975 |
Автор | Даглас Хофштадтер |
Жанр | Философия, Математика, Естественнонаучные дисциплины, Философия и религия |
Год | 2001 |
Автор | Мартин Гарднер |
Жанр | Математика, Естественнонаучные дисциплины |
Год | 1984 |
Автор | Успенский Андреевич |
Жанр | Математика, Естественнонаучные дисциплины |
Автор | Иосиф Леонидович Розенталь |
Жанр | Математика, Физика, Естественнонаучные дисциплины |
Автор | Дионис Бюргер |
Жанр | Научная Фантастика, Математика, Фантастика, Естественнонаучные дисциплины |
Год | 1976 |