Книга посвящена задаче о топологической сопряжённости отображений. В монографии приводится её алгоритмическое решение для обобщённых псевдоаносовских гомеоморфизмов как ориентируемых, так и не ориентируемых поверхностей. Это решение основано на рассмотрении марковских разбиений некоторого специального вида (ленточные разбиения) и на их описании посредством конечного набора данных (кода). Описывается универсальный способ построения обобщённого псевдоаносовского гомеоморфизма.В качестве следствия рассматривается задача об алгоритмическом перечислении обобщённых псевдоаносовских гомеоморфизмов и строятся их примеры с заданными геометрическими и динамическими характеристиками.Изложение сопровождается примерами, иллюстрирующими все рассматриваемые конструкции и алгоритмы.
Чтобы оставить свою оценку и/или комментарий, Вам нужно войти под своей учетной записью или зарегистрироваться
Пока никто не оставил впечатление о книге...
Пока никто не оставил цитат из этой книги...
Автор | Генри Дьюдени |
Жанр | Математика, Естественнонаучные дисциплины |
Год | 1975 |
Автор | Даглас Хофштадтер |
Жанр | Философия, Математика, Естественнонаучные дисциплины, Философия и религия |
Год | 2001 |
Автор | Мартин Гарднер |
Жанр | Математика, Естественнонаучные дисциплины |
Год | 1984 |
Автор | Успенский Андреевич |
Жанр | Математика, Естественнонаучные дисциплины |
Автор | Иосиф Леонидович Розенталь |
Жанр | Математика, Физика, Естественнонаучные дисциплины |
Автор | Дионис Бюргер |
Жанр | Научная Фантастика, Математика, Фантастика, Естественнонаучные дисциплины |
Год | 1976 |