Квадратные трехчлены x2 + px + q образуют двупараметрическое семейство: каждому из них соответствует точка плоскости с координатами (p, g). Дискриминантное условие p2 - 4q = 0 можно рассматривать как уравнение кривой, разделяющей точки этой плоскости, соответствующие многочленам с разным числом корней.
Чтобы оставить свою оценку и/или комментарий, Вам нужно войти под своей учетной записью или зарегистрироваться
Пока никто не оставил впечатление о книге...
Пока никто не оставил цитат из этой книги...
Автор | |
Жанр | Математические науки |
Год | 2017 |
Автор | Луридас Панос |
Жанр | Математические науки |
Год | 2018 |
Автор | Яков Перельман, Перельман Яков |
Жанр | Математические науки |
Год | 2018 |
Автор | |
Жанр | Математические науки |
Год | 2018 |
Автор | Норберт Винер |
Жанр | Математические науки |
Год | 2018 |
Автор | Джон фон Нейман |
Жанр | Математические науки |
Год | 2018 |