Представлены фундаментальные знания и практические инструменты в области машинного обучения, в том числе более 100 углубленных упражнений на языке Python. Дано введение в машинное обучение и математическую оптимизацию, включая методы первого и второго порядков, градиентного спуска и Ньютона. Приведено полное описание обучения с учителем, включая линейную регрессию, двухклассовую и многоклассовую классификацию, а также обучение без учителя и фундаментальные методы генерации признаков. Дано введение в нелинейное обучение с учителем и без. Обсуждается тема автоматизированного отбора подходящих нелинейных моделей, включая перекрестную валидацию, бустирование, регуляризацию и ансамблирование. Рассмотрены фиксированно-контурные ядра, нейронные сети, деревья и другие универсальные аппроксиматоры. Отдельно дана полная трактовка продвинутых методов оптимизации. Электронный архив на сайте издательства содержит коды всех примеров и более 300 цветных иллюстраций.
Для разработчиков систем машинного обучения.
Чтобы оставить свою оценку и/или комментарий, Вам нужно войти под своей учетной записью или зарегистрироваться
Пока никто не оставил впечатление о книге...
Пока никто не оставил цитат из этой книги...